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ON ESTI~TING THE ATT~CTION REGIONS OF THE EQUILIBRIUM STATES OF 

DYNAMIC SYSTEMS BY THE DIRECT LYA~UNOV METHOD* 

G.L. KOMAROVA and G.A. LEONOV 

The method of non-local reduction /l, 2/ is proposed for estimating the 
attraction regions of asymptotically stabl.e equilibriums states of dynamic 
systems linked to the construction of Lyapunov functions in which the 
thoroughly investigated trajectories of two-dimensional systems are 
contained, The class of functions described below widens the class of 
functions obtkined on the basis of Lur'e-Postnikov functions /3, 4/. 
That region entirely belongs to the attraction region of the system 
equilibrium state and is wider than the estimate of the attraction region 
estimated by the Lur'e-Postnikov function basis. The attraction region 
may exceed the limits of the interval in which the non-linearity satisfies 
the generalized Rout&Hurwitz conditions /5/. The algorithm proposed 
below contains the logarithms for specific conditions based on Lyapunov 
functions of the Lur'e type and the special condition of V.M. Popov. 

The systems of non-linear differential equations considered have the form 

z' = Px -+ qp (5). 5 = F*l (1) 

where P is a constant matrix (n + 1) x (n j 1) and Q, r are (n + I)-dimensional constant 
vectors. The non-linear function v(u) is continuous and unique for all of0. For a=0 the 
value of v(u) is the set [cp(-0). e(+ 0)). The function m(o) is assumed to satisfy the 
inequality. 

'f (5) 5> 0, y5 + 0 (2) 

The matrix P has an arbitrary spectrum. When the eigenvalues of P have positive real 
parts, system (l! will be tailed inherently unstable. 

We formulate the problem as follows. It is required to construct in the phase space of 
system (1) a region entirely belonging to the attraction region of the equilibrium space I = 0, 
i.e. evaluating from "inside" the region of asymptotic stability "in the large", 

The problem of such an estimation of the attraction region of the zero solution of system 
(1) then reduces to investigating the second-order system 

1)' = al> - cp (u), u‘ = 7) - 8~ (a); a > 0, p > D (31 

where the function ~((a) satisfies condition 12:. Along with system (3) we shall consider the 
equation 

dF($ 
--z-= 

IF(S) - v (31 
F(T)- B(F (3) (4) 

The solution F(5) of Eq.(4) correspond to trajectories of system i?: when o# 0. The 
field of directions of system (3) shows that for nurrhers aI<O< bz and so> 0 Eq. (4: has 
solutions F_(u). F+(a) with the following properties: 

F_’ (u) > 0, Vu E lo,. 0). F_ (al) = so (5) 
F,’ (0) > 0% Yu 5 (u. 0~1. FT (u2) = -so 

To prcve Theorem ? WE shall use the solution F(o) of Eq.i4! specified for 5~ lo,. 5zjl 
which is defined as follows: 

We will. assume that fcr some p the relation 

0 Q c$ (a) u < p'a?, 't'o E 101, 021 
is satisified. 

(6) 

Consider the behaviour cf the trajectories of system (1) close tc the hyperplane 5 =o, 
assuming that p = r*q<O. In that case system (1) is in the so-called sliding mode in the 
hyperp lane "band" r*x = 0 
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n = (2: --pep (-0) < r*Pt < --pv (+O), r% = 0) (7) 
in which u' (t) E 0. The solution of system (1) can only leave tit band at the boundary points 

of set (71, and the motion in the sliding mode is defined by the linear system /S/ 

I' = (I - qr*/p) Pz, r*z = 0 (8) 

Consider sets of form Y(c) = {I: r*Lt<c, r*t = 0) of soms positive definite matrix L = L*. 
If the number 6 is such that the set Y(&) belongs to the band (7) and the matrix L satisfies 
the inequality t (I - p-lqr*) P + P* (I - p+rq*) L( 0, the set Y (c) is positively invariant for 
solutions of system (8) and, consequently, for solutions of z(1) of system (1). This means 
that when t(O)E y (0, then z(t)EY(fJ for all t>O. If moreover all roots of the 
characteristic equation of system (8) /5/ 

det (P - pl) r* (P - PI)-’ q = 0 (9) 
are to the left of the imaginary axis, the solutions of system (8) approach the point z = 0 

as t++CO. 

We will introduce the notation L, = sup {c: Y((:)c ll) and x(p) = r* (P - pl)-‘q, and determine 
for the arbitrary matrix H = H* > 0 and numbers (I~, a, the number H, using the formula 

Ho =min(min z*Hz) 

A relative minimum of the quadratic form z*Hz 
on condition that 7.2 = ol. 

Hence 

is reached at z1 = o,H?(r*H-+)-I /6-9/ 

Let us formulate the theorem on the estimate of attraction region of the solution z = 0 
of system (1). 

Theorem 1. If real synnzetric matrices H> 0, L>O and numbers I,<O,T>O, e>O,er<O 
exist for X = 0, Es = 8% and h# 0 such that the following conditions are satisfied: 

1) the set R. = {J : r*Lr < f$SL,, r*z = 0) is positively invariant for solutions of 
system (8) ; 

2) P $ k1 is a Hurwitz matrix; 
3) the following matrix inequalities R < 0 and --yR > gg*, where R = H(P + Al)+(P* + 

hi) H + L, g = Hq t ‘I2 (6P*r + rr), are satisfied 

y = TV-1 - pe j (3Ej.i. 

4) for the solution F (0) of (4) with Q = --ii (eP)"~, fi = --pp~J (Bl'J-'$ r = -((BP*r I Tr)*q, 
S0 = (2e-‘H,)“‘, which has the properties (5) the relation F (-0) = --F(~0j holds, and moreover 
when X#O the condition 

is satisfied, 
5) when in condition (6), h#O, we have p = -+ 00. 

Then any solution r(f) of systee (1) with initial conditions 

J (0) E R = {J : .r*Hz < 1’2eF*(o), 0 E (a,, 02)) i Oa (11) 

belongs to the region Q for all t > 0. 

If moreover all the roots of Eq.(9) are on the left of the imaginary axis, the solution 
2 (f) with initial conditions (11) approaches the point r = 0 as t- T 00, i.e. the region 
Q belongs tothe attraction region of the equilibrium state I = 0 of system (1). 

The condition for the matrix H to exist defines the following lemma. 
Lemma 1. For the existence of the matrix H = H* that Satisfies condition 3) OfTheorem 

1 it is necessary and sufficient that the inequality 

Re I(7 -!- ep) Y. (p) - q* (P* - pl)-l L (P - pW1ql -+ (z;.i. - rip > 0 (12) 

where p = io - ?. is satisfied for all o ER'. An algorithm for determining the matrix H is 
described in /lo, 11/j. 

Proof of Theorem 1. By virtue of condition 3) of Theorem 1, by Lemma 1.2.1 in /5/ the 
inequality 

2z* H I(P + ?.I) z i qE1 - e.$r* (Pz + qf) + TE;r*2 - z*Lr - (&. + rp-l)j? Q 0 (13) 

is satisfied for any z, E. 
Consider the function 

1: (z) = z*Hz - v2ek-z (0) (14) 
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Let x (1) be some solution of system (1) with initial conditions so Q \Q, (if 1 
(0) E 9, ), then 1 (1) E Q, for all t > 0 by condition 1) of Theorem 1). Calculating the 
time derivative of the function r(l) = I'@(t)) , by virtue of system (1) we obtain 

1.' T 2i.l = 2x*Ji f(P -i hl) r + 99, (of1 - e?P (a) - W (o)F’ (a) r* IPr + qp (a)] 

where r = r(t), U = O(1). Using (13) we obtain 

c' -+ 2;1.~ < - By (o)r* IPs + qq (a)] - zq, (0) r*z + tp-Lq* (u) - (13 

r*L.s j pCi.X~* (0) - 0P (0) - BF (0) F’ (0) r* 1Pr + q(J ((I)] 

Since L' (0) = x* (0) Hr (0) - V&W* -i- (o(O))<O, then from the continuity of the function 
it follow5 that a number I exists such that for t< T the condition v(t)<0 is 5atr5fiei(i) . 

f 
i.e. r(t)E SL Note that 

CJ 0) E (a,, 4, yt : u (2) < 0 (16) 
Indeed, since (J (0) E (ul. op), there is a number il such that when t~[O,t~) the inclusion 

5 (t) E (ul, (I$) holds. Let us assume that o(t,)= cri(i= i,2). Then the relation5 v 0,) < 0, F(e,) : 
--F&j=- imply that I* (t,)Hr(t,)<A, which is at variance with the positive definiteness 
of the matrix h' and the definition of the number a,. 

Assume now that L.(T) = 0. Let us first consider the case of A+ 0. Then eg. = 9, p = T 
a, and from the positive definiteness of the matrix L and (15) we have 

L.' + 21.1. Q - 8 IF (0) F' (0) A cp (u)l r*Pz - 8hFl (CT) - 

pep (0) F' (a) 't (4 - ~r*rq (cr.) - rF (5) F' (CJ) r** 

The last term has been added tc the right side, since F(o)F'(o)o < 0 holds for all u # 0. 
From condition 3; of Theorem 1 it follows that (T= 0 when k+O), hence 

Hq = -I 2 (W*r -I- Itr) if@ 

Let us put c = 8P*r + 'cr. r = --c*q. The positive definiteness of the matrix H and (18) 
imply that r >@. But by Lemz 1. 2.5 in /5/ and on the basis of (18: we have the equations 

det IH + (2c*q)%c*) = det H 11 - (2c*q)-‘c*H-‘cl = 0 

from which, by virtue of the positive definiteness of the matrix H and the positiveness of +he 
number r. we obtain the inequality N - (%*q)-'cc* 20 or s*Hx > (Zr)-' / r*.r j*. From the last 
inequality and the condition r'(r) f 0, when t c IO, Tf it follows that 

1 PI I* < I-w* (a) (19) 
Condition 4i of Theorem 1 ens-res the relation 

F (a) IF (u) F’ (0) i (I (@I < 0. Yo # 0 (W 

This follows from (10 , the ineqlaiity IF(o) / < F(-0) when u !E lo,. 0~1, and the e+atlon 

F (CT) F' (a) f T (a) = LCLf' (0, - firi? (0)llP (CT) - pq (o)l-' 

For f<T such that u(t)#i) we ccntinue the inequality (171, usins (1% an6 (20), an;? the 
fact that c;,i. = 8 when i. + 0. We obtain 

t.' 7 2i.V < -_[F (a) F' (0) -7 v (o)](Br*P + tr*) J- - 8i.P (0) - 

$ir(a)f'(u)(C (o)< -IF(o) F’ (cd + CJ (u)l f%F (4 - 

8i.F’ (0) - pE&F (U)F' (0) ri (0) 

Selecting the n.umbers 5~ = -;.j'erl' e = --pE;.k (err% 2, by virtue of (41 we obtain 

c' + 3j.l. ,$ - 16% F(u) IF (0) F’ (u) - aF (0) - BF' (u) XT (6) + p (o)l = 0 

Thus when i.#O 

u- + 2i.i < 0, t 5 IO, Tl : u (t) # 0 (21) 

For o (t) = 0, u' (t) = 0 (i.e. r*x =O, r*(P.z+ qq(o))=O) from (15) we have 

L.* + 2i.c < - i.eP (u) - ~*Lx (221 

From (22) and (lo) it follow5 that 

v' $ 2hv < 0 (23) 

for such t that o(t) = 0 and X* (i)Lx(t)> Lo>-MP(0). 
If, however, for some f = tZ we have (I (ttf = 0 and I* (t2) ik (t2) < L,, i.e. z (tt) E &,, then 

r(t) ~52, for all t> t2 by virtue of the positive invariance of the set %&,. It follow5 from 
this and (21) that condition (23) is satisfied for all t E IO, Tl, and since v (O)<O, hence 
v(T)<0 which is at variance with E.(T) = 0. Consequently conditions (23) are satisfied for 
all t E IO, 121. 

The function F(a) satisfies the equation F (a) F’ (u) + v (u) = 0 and 1. = 0. Hence from 
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(6) and (15) and the positive definiteness of the matrix L, we have for all t>O 

v' < - e IF (u) F' (a) + cp (@I r* IPZ + qcp (ON - T [r*r - 0 (a)/pl’p (a) < 0 
Thus the inequality 

v' (t) < 0, rt E 10, f*), tz G + 00 (24) 

is satisfied for all k,<O, and if tz< + 00 then z(t)6% 9, for all t> tz. It follows from 
(24) and v(O)<0 that v(t)<0 when t E IO, 1,). Prom this and (16) it follows that u E (0,. u2) 
for all 220. 

It is thus proved that when r(O)= R, i.e. v (0) < 0, then z(f) CR for all t 20. We 
shall now show that z(t) +O when condition (11) is satisfied. 

Assume that for all t> 0 r(t)~ !il \a,. Since l(1) is bounded, hence the function c(f) 
is also bounded for all t> 0. This and (24) imply the existence of the limit 

lim 1' (r (1)) = V, (25) 
i-.-a, 

and the set of o-limit points of the trajectory x(t) is not empty /5/. By Theorem 2.2.5 of 
/5/ a trajectory ro(t) exists consisting entirely of b-limit points of the trajectory r(t). 
It follows from (25) that 1' (Jo (f)) G 1." for all t 2 0, which contradicts (24). 

Consequently, there is an instant of time t2 such that r(2*)5$,, hence z(t)E n, for 
all t > tr. By the conditions of Theorem 1 the characteristic equation ofthe sliding mode (9) 
has roots with negative real parts. Hence solutions of the linear system (8) approach the 
equilibrium state I = 0 as i+ -I 00. This shows that the solution r(1) of system (1)approaches 
thepoint 31-o as t+ -km. Theorem 1 is proved. 

The statement of Lemma 1 follows from Lemma 1.2.1 and Theorem 1.2.6 of /5/, and from the 
non-degeneracy of the transfer function x(p) of system 1. 

The algorithm proposed in the proof of Theorem 1 is an extension of the algorithms /6-9, 
12-22/based on the construction of a Lyapunov function of the Lur'e type 

V1 (x) = r*Hx + f3 5 I+J (u) da 
Cl 

where H = H* > 0. 
Indeed, suppose all the conditions of Theorem 1 are satisfied when b= 0. i.e. the matrix 

P of the input system is a Hurwitz matrix. Integrating Eq.(4) for L= 0 and F(o)P' (a) -I- o(o)= 0. 
we obtain 

F'(:)=?[~(;)c;+F~(0) 
0 

Thus the function i'(z) (i41, when i. = 0. is identical, apart from a constant, with v, (1). 
Let 01, % be the values sf o for which condition (6) is satisfied. When O=ol (i=l, 2), we 
have 

The region R obtained by Thoerem 1 is defined for A= 0 by the inequalities 

and coincides exactly with the region obtained in /6-9,12-22/ using the function r1 (2). 
We select for h = 0 the matrix L>O so as to have z*Lt< blrll for any b>O. The 

frequency condition (12) is then of the following form: Re[(z +ioO)x (io)) + rp-l>Oand is the same 
as Popov's frequency condition 123,' used in /6-9,12-24/. 

Thus the algorithms in /6-9,12--22/, based on the construction of a Lyapunov function 
of the Lur'e type, are contained in the proof cf Theorem 1 when A= 0. 

The sector (6) in which the non-linearity graph of p(u) must lie when (IE [ol, o,] belongs 
to the sector 

ho* G v (0) c S I+*, h, G + ~0 (27) 

in which system (1) is linearized for CF (0) p hc, is stable for any h ~(h~, /I*). Regions obtained 
in /6-9,12-24/arc bounded along the 3 axis in the interval 10 i,l, o,,J in which e (0) satisfies 
(27). If Theorem 1 is applied for the inherently unstable system (l), then i.<O and condition 
(6) is identical with (2) and Theorem 1 does not contain requirements of the type of (27) 
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(sector (6) in that case is wider than sector (27)). Region Q is not bounded on the o axis by 
the interval [ohl,u~l and for a number of systems it is outside the limits of the interval 
indicated. This is confirmed by the example given below. 

lhoerem 1 enables thus to obtain in a number of cases for 11<9 a region Q more exactly 
approximating to the true attraction region of the stationary solution of a system of form 
(1) than the estimates in /6-9,12-24/. 

Consider now a system of the form 

z' = AZ -f- brp (u), u’ = c*z + pip ((I) Gw 
where A is a constant n X n-matrix of an arbitrary spectrum, b, c-n are vectors, p<Ois 
a number, and the function m(u) satisfies condition (21. System (28) can be reduced to the 
form ill. We shall formulate for system (28) a result that can be considered as some "limit" 
case of Theorem (1). We introduce the notation D(p) = c* (A - pf)“ b, I’ = -c*b, and for some 
matrix L = L* > 0, Y,(c) = {z:z*Lz< F), ll, = {z: - pq(-O)< c+z Q - pv(+O)),L, = sup (E :Y,(r)C 

n,1. We assume that r > 0. 

Th@osem 2. we assume the existence of a matrix L = L* >0 and a number 5<0, @>O 
that satisfy the conditions 

1) A $ hl is a Hurwitz matrix; 
2) for all oE(- m, + ~5) the inequality 

8 Re D (to - k) - b* [A’ + (h - io) W L LA -f- (h - i~) Wb > 0 (29) 

is satisfied: 

3) I'il;~I/~~~I'F.(e)l; 

4 ) L (A - p-‘bc*) + (A* - p-‘cb’) L < 0; 

5) for the solution F(U) of Eq.(4) with a = -XI'-":. fi = -pr-':s and sg = 0 which has 

the properties (5) the relation F(-0) = --F(+O) = j'~holds. 
The following statements hold: 
a) all solutions z(f). a(f) of system (28) with initial conditions 

(I (o), u (0)) C R = {z_ u : z*Ht O/&r' (0). Ur < U < Ur) ;! 
(2 : z*Lz .< L,} 

satisfy the inclusion (z(f): o(i)) ER for all f > 0; 
b) if besides the satisfaction of condition 1)-S) A -_-‘bc* is a Hurwitz matrix, any 

solution of system (28) with initial condition (z(0) and u (0))~ n approaches the point 
z=o,o=o as t+-bo. 

The existence of the matrix H is guaranteed by the satisfaction of the frequency condition 
(29) of Lemma 1.2.6 in /5/. 

Example. The application of Theorem 2 wili be shown using the example of a system of 
second-order equations (Balgakov's second problem) /25, 261. 

where q(o) is a function of the form (2), G*. a>O. f>O,E>O are constants of the controller, 

and T. L' are constants of the controlled system. We will consider system (30: for L‘= 0 and 
e* = 0. 

System (30) can be reduced to a system of the form (281, where 

The, sliding system (30) is defined by the eqtlation 

The matrix L is seclected in the form 

where e70 is some 

&=!lF cJ 
/; 0 (al - k) T-C { 

number. The matrix L is positive definite when 

al-k>0 

Condition 4) of Theorem 2 is then satisfied. 

(33) 

(33) 
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We shall determine the number L, so that the system of equations e[r,*+(ol-&)T-*tlJ-L,,El,+ 
g = I-' (I, = t's a*= E) will have a unique solution (i.e. the set r*Lz= L, must touch the boundary 
of the band jc*z(= -p). We obtain 

L, = d-*.2-‘, A = E’ + O’P (01 - k)_’ (34) 
Condition 1) of Therem 2 is satisfied if 

--I > fi/T (35) 
and condition 2) 

Re [(Ep + a) (T’p* - k)-I] - P I p I* + +j I T*p’- k I-*& 0 

holds when 
e= --1?(Eh+o)>o 
2T'ai' + Ek). - ok + (El. + &(a1 - k) > 0 

(56) 

Selecting L= -,~E-l-6~(6~>0 is some number), and when the inequalties 

E I/i;< oT, Fl < 4aT’ 

are satisfied condition (29) is satisfied. Taking into acccount (34) we obtain 

(37) 

b-(-O)= 
T fq 

1 I/--x r/x 

Condition 3) of Theorem 2 has the form 

6,. ( l.U(EF) (38) 

Hence, when relations (33), (37), and (38) are satisfied all conditions of Thoerem 2 are 
satisfied. 

The region R is bo.unded along the c axis by the segment (a,,~), where cl, = -0p are zeros 
of the function r(o). In system (30) the function ~(0) is a relay function. System (3) is 
then integrable. Calculating o(t) = o1 at the instant t, at which n (I~) = 0 (o (0) = 0, n (0) = F (-O)), 
we obtain 

I-*@ 
Zl ==v o- In (1 +-al)+)- + (39) 

I = (0 7 E6,) E-’ ‘T, p=-& 
IVE ’ 

w=F‘(-0) (40) 

Let us now compare the interval (c?~.- ol) obtained with the interval (-a,,.~~) that is cut 
out on the a axis by sectcr (27) from system (30). Tc do this we consider the linear system 
obtained from (30) for c(o)= ~0. That system is stable when Y.> d/E, i.e. h, = CdE, h2=--moo. 

The non-linearity of c(oi belongs tc sector (27) when a E (--f!(U)], E/(0)),. 
Substituting into (40) the numerical values of the parameters E = 4, o = 3. I = 1, T = 15, k = i. 

6, = 0.4, we obtain (rl= -1.563. The value of IJ/, is then equal to 1.333. 
The region (26) calculated in /6-9,12-24,' is bounded on the c axis by the interval(-1.333; 

1.333). since the region R cuts cut on the c axis an intervai (--1.563;1.563). Consequently,theesti- 
mateof nobtained using Theorem 2 of the true attraction region is more accurate for system 
(301 than that constructed using the algorithms of -he Lyapunov function of the Lur'e type. 
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ON APPROXIMATE METHODS OF ANALYSING CERTAIN SINGULARLY-PERTURBED SYSTEMS* 

L.K. KUZ'MINA 

A certain class of singularly-perturbed systems which have a variety of 
m-dimensional stationary positions is considered. When a small parameter 
disappears, the system also has an m-dimensional manifold of stationary 
positions and, therefore, the corresponding characteristic equation has m 
zero roots. The conditions under which the solution of a stability problem 
reduces to the same problem for a degenerate system are defined. As an 
application in practice gyroscopic stabilizing systems (the critical case 
corresponds to such systems) with elastic elements of high stiffness are 
discussed. The conditions under which the solution of the problem of the 
stability of steady motion follows from the solution of this problem for 
an ideal system (with absolutely rigid elements) are obtained. The problem 
of the closeness of the corresponding solutions of the complete and a 
simplified system of differential equations over an infinite time interval 
is discussed. 

1. Suppose the perturbed motion of a system is described by a differential equation of 
the form 

*Prikl.Matem.MeJ&an.,49,6,909-915,1985 


